Astable Multivibrator D>50%
Astable multivibrator adalah rangkaian elektronik yang menghasilkan gelombang persegi tanpa memerlukan input eksternal untuk mempertahankan osilasinya. Ini dicapai dengan menggunakan dua transistor (atau komponen aktif lainnya) yang secara bergantian saling menghidupkan dan mematikan, menghasilkan output yang terus beralih antara dua tingkat tegangan. Ketika tugas siklus lebih dari 50% (D>50%), berarti waktu ketika output berada dalam keadaan tinggi lebih lama dibandingkan dengan waktu dalam keadaan rendah. Hal ini sering diinginkan dalam aplikasi di mana sinyal dengan periode aktif yang lebih panjang diperlukan, seperti dalam pengaturan waktu, kontrol pulsa, atau penguat sinyal.
Untuk mencapai kondisi astable dengan D>50%, perancangan komponen pasif seperti resistor dan kapasitor harus disesuaikan secara cermat. Pengaturan ini memastikan bahwa pengisian dan pengosongan kapasitor dalam rangkaian memakan waktu lebih lama saat output dalam keadaan tinggi. Dengan demikian, astable multivibrator dengan duty cycle lebih dari 50% dapat menghasilkan sinyal yang memenuhi kebutuhan spesifik dari berbagai aplikasi elektronik, seperti pembangkit gelombang, pemancar, dan pengontrol lampu kilat. Kemampuan untuk mengatur dan memanipulasi duty cycle membuat astable multivibrator menjadi alat yang sangat fleksibel dan penting dalam desain rangkaian elektronik modern.
b. Mempelajari cara merancang rangkaian astable multivibrator D > 50%.
c. Mengetahui cara mengaplikasikan rangkaian
-Alat:
Instrumen:
a. Osiloskop
Osiloskop adalah alat ukur elektronika yang berfungsi memproyeksikan bentuk sinyal listrik. Osiloskop dilengkapi dengan tabung sinar katode. Peranti pemancar elektron memproyeksikan sorotan elektron ke layar tabung sinar katode.
Generator:
a. Baterai Spesifikasi:- Input voltage: ac 100~240v / dc 10~30v
- Output voltage: dc 1~35v
- Max. Input current: dc 14a
- Charging current: 0.1~10a
- Discharging current: 0.1~1.0a
- Balance current: 1.5a/cell max
- Max. Discharging power: 15w
- Max. Charging power: ac 100w / dc 250w
- Jenis batre yg didukung: life, lilon, lipo 1~6s, lihv 1-6s, pb 1-12s, nimh, cd 1-16s
- Ukuran: 126x115x49mm
- Berat: 460gr
- Input voltage: ac 100~240v / dc 10~30v
- Output voltage: dc 1~35v
- Max. Input current: dc 14a
- Charging current: 0.1~10a
- Discharging current: 0.1~1.0a
- Balance current: 1.5a/cell max
- Max. Discharging power: 15w
- Max. Charging power: ac 100w / dc 250w
- Jenis batre yg didukung: life, lilon, lipo 1~6s, lihv 1-6s, pb 1-12s, nimh, cd 1-16s
- Ukuran: 126x115x49mm
- Berat: 460gr
-Bahan:
a. Resistor
b. Dioda
SpesifikasiUntuk menghantarkan arus listrik ke satu arah tetapi menghambat arus listrik dari arah sebaliknya. Oleh karena itu, Dioda sering dipergunakan sebagai penyearah dalam Rangkaian Elektronika. Dioda pada umumnya mempunyai 2 Elektroda (terminal) yaitu Anoda (+) dan Katoda (-) dan memiliki prinsip kerja yang berdasarkan teknologi pertemuan p-n semikonduktor yaitu dapat mengalirkan arus dari sisi tipe-p (Anoda) menuju ke sisi tipe-n (Katoda) tetapi tidak dapat mengalirkan arus ke arah sebaliknya.
c. Op-AMPKonfigurasi 741
spesifikasi:
d. Kapasitor
Kapasitor berfungsi sebagai penyaring atau filter dalam sebuah rangkaian power supply (catu daya). Fungsi kapasitor sebagai pembangkit frekuensi pada alat osilator. Kapasitor berfungsi untuk menyimpan tegangan dan kuat arus pada periode tertentu. Pada rangkaian antena, fungsi kapasitor adalah sebagai frekuensi.
DataSheet :Specification:
Capacitance: 100uF
Rated Voltage: 400V
Capacitance Tolerance: +/-20% (at 120Hz, 20℃)
Lead Type: Radial
Category Temperature Range: -40℃ to +105℃ (6.3~100V)
Life Span: 2000-3000h
Body Size: 18 x 30mm
Lead Length: 23mm, 28mm
Lead Space: 7.5mm
Lead Diameter: 0.8mm
e. Ground
Konfigurasi 741
Capacitance: 100uF
Rated Voltage: 400V
Capacitance Tolerance: +/-20% (at 120Hz, 20℃)
Lead Type: Radial
Category Temperature Range: -40℃ to +105℃ (6.3~100V)
Life Span: 2000-3000h
Body Size: 18 x 30mm
Lead Length: 23mm, 28mm
Lead Space: 7.5mm
Lead Diameter: 0.8mm
A. Astable Multivibrator D > 50 %
Rangkaian astable multivibrator D > 50% dapat digunakan dalam berbagai aplikasi elektronika, seperti dalam pembangkit sinyal clock, pembangkit pulsa, dan rangkaian timer.
B. Rangkaian
- Resistor
- Dioda
1. Dioda Penyearah (Dioda Biasa atau Dioda Bridge) yang berfungsi sebagai penyearah arus AC ke arus DC.
2. Dioda Zener yang berfungsi sebagai pengaman rangkaian dan juga sebagai penstabil tegangan.
3. Dioda LED yang berfungsi sebagai lampu Indikator ataupun lampu penerangan.
4. Dioda Photo yang berfungsi sebagai sensor cahaya.
5. Dioda Schottky yang berfungsi sebagai Pengendali.
- Op Amp 741
Op-Amp adalah salah satu dari bentuk IC Linear yang berfungsi sebagai Penguat Sinyal listrik. Sebuah Op-Amp terdiri dari beberapa Transistor, Dioda, Resistor dan Kapasitor yang terinterkoneksi dan terintegrasi sehingga memungkinkannya untuk menghasilkan Gain (penguatan) yang tinggi pada rentang frekuensi yang luas. Dalam bahasa Indonesia, Op-Amp atau Operational Amplifier sering disebut juga dengan Penguat Operasional.
Karakteristik penguat ideal adalah:
- Gain sangat besar (AOL >>). Penguatan open loop adalah sangat besar karena feedback-nya tidak ada atau RF = tak terhingga, serta pada rentang frekuensi yang luas.
- Impedansi input sangat besar (Zi >>). Impedansi input adalah sangat besar sehingga arus input ke rangkaian dalam op-amp sangat kecil sehingga tegangan input sepenuhnya dapat dikuatkan.
- Impedansi output sangat kecil (Zo <<).
Konfigurasi PIN 741:
Spesifikasi:
Respons karakteristik kurva I-O:
Penguat Pembalik:
Istilah berikut digunakan dalam rumus dan persamaan untuk Penguatan Operasional.
• R f = Resistor umpan balik
• R in = Resistor Masukan
• V in = Tegangan masukan
• V keluar = Tegangan keluaran
• Av = Penguatan Tegangan
Penguatan tegangan:
Gain loop dekat dari penguat pembalik diberikan oleh;
Tegangan Keluaran:
Tegangan keluaran tidak sefasa dengan tegangan masukan sehingga dikenal sebagai penguat pembalik .
Penguat Penjumlahan:
Tegangan Keluaran:
Output umum dari rangkaian yang diberikan di atas adalah;
Jumlah Tegangan Input Amplifikasi Terbalik:
jika resistor inputnya sama, outputnya adalah jumlah tegangan input yang diskalakan terbalik,
Jika R 1 = R 2 = R 3 = R n = R
Output yang Dijumlahkan:
Ketika semua resistor dalam rangkaian di atas sama, outputnya adalah jumlah terbalik dari tegangan input.
Jika R f = R 1 = R 2 = R 3 = R n = R;
V keluar = – (V 1 + V 2 + V 3 +… + V n )
Penguat Non-Pembalik:
Istilah yang digunakan untuk rumus dan persamaan Penguat Non-Pembalik.
• R f = Resistor umpan balik
• R = Resistor Tanah
• V masuk = Tegangan masukan
• V keluar = Tegangan keluaran
• Av = Penguatan Tegangan
Keuntungan Penguat:
Gain total penguat non-pembalik adalah;
Tegangan Keluaran:
Tegangan output penguat non-pembalik sefasa dengan tegangan inputnya dan diberikan oleh;
Unity Gain Amplifier / Buffer / Pengikut Tegangan:
Jika resistor umpan balik dilepas yaitu R f = 0, penguat non-pembalik akan menjadi pengikut / penyangga tegangan
Penguat Diferensial:
Istilah yang digunakan untuk rumus Penguat Diferensial.
• R f = Resistor umpan balik
• R a = Resistor Input Pembalik
• R b = Resistor Input Non Pembalik
• R g = Resistor Ground Non Pembalik
• V a = Tegangan input pembalik
• V b = Tegangan Input Non Pembalik
• V keluar = Tegangan keluaran
• Av = Penguatan Tegangan
Keluaran Umum:
tegangan keluaran dari rangkaian yang diberikan di atas adalah;
Keluaran Diferensial Berskala:
Jika resistor R f = R g & R a = R b , maka output akan diskalakan perbedaan dari tegangan input;
Perbedaan Penguatan Persatuan:
Jika semua resistor yang digunakan dalam rangkaian adalah sama yaitu R a = R b = R f = R g = R, penguat akan memberikan output yang merupakan selisih tegangan input;
V keluar = V b – V a
Penguat Pembeda
Penguat Operasional jenis ini memberikan tegangan output yang berbanding lurus dengan perubahan tegangan input. Tegangan keluaran diberikan oleh;
Input gelombang segitiga => Output gelombang persegi panjang
Input gelombang sinus => Output gelombang kosinus
Penguat Integrator
Penguat ini memberikan tegangan keluaran yang merupakan bagian integral dari tegangan masukan.
- Kapasitor
Setiap perangkat elektronika memiliki simbol sebagai lambang. Demikian pula dengan rangkaian kapasitor. Pada simbol kapasitor dibuat dengan tampilan yang nyaris sama.
Namun terdapat pula perbedaan yang terletak pada beberapa titik yang bertujuan untuk membedakan jenisnya.
Simbol kapasitor dibedakan menjadi dua, yaitu:
- Simbol kapasitor standar Eropa.
- Simbol kapasitor standar Amerika.
Anda dapat melihat contoh simbol-simbol kapasitor seperti dibawah ini:
Dari gambar diatas dapat disimpulkan bahwa simbol kapasitor standar Eropa dilambangkan dengan dua segi empat yang dibuat sejajar. Sedangkan untuk simbol kapasitor standar Amerika, mereka menggunakan dua garis yang disejajarkan secara vertikal. Secara sekilas, simbol kapasitor dari kedua jenis diatas terlihat mirip. Perbedaannya hanya terletak pada beberapa bagian. Berikut ini penjabarannya.
- Adanya kutub positif untuk kapasitor bipolar.
- Perbedaan letak ujung panah untuk kapasitor variabel (trimmer).
- Terdapat perbedaan bentuk fisik dan cara mengubah kapasitas pada kapasitor trimmer dengan varco biasa.
Macam-Macam Rangkaian Kapasitor
Untuk mendapatkan nilai tertentu pada kapasitor, hal tersebut bisa didapatkan dengan cara merangkai beberapa buah kapasitor sesuai kebutuhan.
Rangkaian untuk kapasitor pada umumnya sama dengan rangkaian listrik yang dapat dibedakan menjadi tiga, yakni rangkaian kapasitor seri, paralel dan juga gabungan. Simak penjelasannya berikut ini:
Untuk mendapatkan nilai tertentu pada kapasitor, hal tersebut bisa didapatkan dengan cara merangkai beberapa buah kapasitor sesuai kebutuhan.
Rangkaian untuk kapasitor pada umumnya sama dengan rangkaian listrik yang dapat dibedakan menjadi tiga, yakni rangkaian kapasitor seri, paralel dan juga gabungan. Simak penjelasannya berikut ini:
1. Rangkaian Kapasitor Seri
Rangkaian kapasitor seri merupakan rangkaian yang dibuat dengan cara menyambungkan kaki-kaki kapasitor dalam satu garis lurus. Pada rangkaian seri, ketika Anda ingin mencari hambatan. Maka hambatan totalnya cukup dijumlahkan saja.
Untuk mendapatkan hasil penghitungannya, Anda dapat menggunakan rumus kapasitor seri, yakni adalah:
Rangkaian kapasitor seri merupakan rangkaian yang dibuat dengan cara menyambungkan kaki-kaki kapasitor dalam satu garis lurus. Pada rangkaian seri, ketika Anda ingin mencari hambatan. Maka hambatan totalnya cukup dijumlahkan saja.
Untuk mendapatkan hasil penghitungannya, Anda dapat menggunakan rumus kapasitor seri, yakni adalah:
2. Rangkaian Kapasitor Paralel
Rangkaian kapasitor paralel merupakan rangkaian yang terdiri dari 2 buah atau lebih kapasitor yang disusun dengan bentuk paralel atau berderet.
Untuk jenis kapasitor paralel, susunan rangkaian paralel dapat Anda lihat pada gambar berikut ini:
Untuk penghitungan nilai kapasitas rangkaian paralel pada kapasitor, Anda dapat menggunakan rumus kapasitor paralel, yaitu:
Rangkaian kapasitor paralel merupakan rangkaian yang terdiri dari 2 buah atau lebih kapasitor yang disusun dengan bentuk paralel atau berderet.
Untuk jenis kapasitor paralel, susunan rangkaian paralel dapat Anda lihat pada gambar berikut ini:
Untuk penghitungan nilai kapasitas rangkaian paralel pada kapasitor, Anda dapat menggunakan rumus kapasitor paralel, yaitu:
3. Kapasitor Gabungan
Rangkaian gabungan merupakan rangkaian kapasitor yang terdiri dari perpaduan antara seri dan paralel.
Untuk menghitung nilai kapasitas dari rangkaian gabungan, Anda dapat menghitung dengan menggunakan rumus kapasitor gabungan di atas, yakni dengan menghitung masing-masing rangkaian, antara seri dan paralel kemudian menjumlahkannya.
Rangkaian gabungan merupakan rangkaian kapasitor yang terdiri dari perpaduan antara seri dan paralel.
Untuk menghitung nilai kapasitas dari rangkaian gabungan, Anda dapat menghitung dengan menggunakan rumus kapasitor gabungan di atas, yakni dengan menghitung masing-masing rangkaian, antara seri dan paralel kemudian menjumlahkannya.
a) Prosedur
- Untuk membuat rangkaian ini, pertama, siapkan semua alat dan bahan yang bersangkutan, di ambil dari library proteus
- Letakkan semua alat dan bahan sesuai dengan posisi dimana alat dan bahan terletak.
- Tepatkan posisi letak nya dengan gambar rangkaian
- Selanjutnya, hubungkan semua alat dan bahan menjadi suatu rangkaian yang utuh
- Lalu mencoba menjalankan rangkaian , jika tidak terjadi error, maka motor rangkaian akan mengeluarkan grafik osiloskop seperti pada gambar.
Data Sheet Resistor klik disini
Data Sheet Op-Amp klik disini
Data Sheet Osiloskop klik disini
Data Sheet Kapasitor klik disini
Data Sheet Op-Amp klik disini
Data Sheet Osiloskop klik disini
Data Sheet Kapasitor klik disini
Komentar
Posting Komentar